
AC phonon-assisted hopping conductivity from generalised Master equations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1990 J. Phys.: Condens. Matter 2 5345

(http://iopscience.iop.org/0953-8984/2/24/007)

Download details:

IP Address: 171.66.16.103

The article was downloaded on 11/05/2010 at 05:58

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/2/24
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  Phys.: Condens. Matter 2 (1990) 5345-5355. Printed in the UK 

AC phonon-assisted hopping conductivity from 
generalised Master equations 

V Capeki 
International Centre for Theoretical Physics, 34100 Trieste, Italy 

Received 14 August 1989. in final form 26 February 1990 

Abstract. An intermediate-coupling generalised Master equation theory of AC phonon- 
assisted hopping conductivity is developed. Non-negligible corrections to the standard 
Markovian result are obtained. 

1. Introduction 

It is indisputable that the generalised Master equation (GME) approach to DC (or very- 
low-frequency) phonon-assisted hopping conductivity preserving the correct order of 
limits, i.e. with no expansion in powers of the electron-phonon coupling constant g 
before performing the DC limit cc) + id + 0 (Capek 1987,1988a-c), essentially changed 
our understanding of this type of transport. In particular, it became clear that local-field- 
induced shifts dpn of the chemical potential playing a crucial role in the lowest-order 
Markovian theory leading to the Kirchhoff network (Miller and Abrahams 1960) become 
fully cancelled by higher-order (in g) corrections to the driving term of the network 
equations (capek 1988b). Moreover, it was established that the standard lowest-order 
Markovian theory based on the usual rate equations 

a 
-fm(t> = Z {wmnfn(t>[l -fm(t>l - Wnmfm(t>[l -fn(t>l) (1) 
a t  n(+m) 

may be reconciled with the exact GME just when an incorrect order of limits (i.e. 
expansion in powers of g before taking the DC limit) is used; this is so because the 
Markovian lowest-order theory results from GME by neglecting terms - g 2 / ( o  + id) 
(C8pek 1988~).  It is striking, however, that the Dcphonon-assisted hopping conductivity 
results from GME (Capek 1987, 1988a-c) in exactly the same explicit form as from the 
roughly approximate theory of Kasuya and Koide (1958) based on an unjustified neglect 
of 6pn in the lowest-order Markovian approach based on (1) (i.e. on incorrect neglect 
of terms -g2 / (o  + id) in this type of already approximate formulation of the problem; 
see Manucharyants and Zvyagin (1974)). This coincidence is, however, not fully for- 
tuitous (kipek 1988~) .  

t Present and permanent address: Institute of Physics of Charles University, Ke Karlovu 5, 121 16 Prague, 
Czechoslovakia. 
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Until now, no attention has been, on the other hand, devoted to the AC phonon- 
assisted hopping conductivity problem starting from GME. This has been so mainly owing 
to technical complications connected with the fact that, for w + i6 # 0, g2/(w + id) is 
finite but may be much less than unity as well as much greater than unity. (Moreover, 
this ratio usually appears in combinations with different types of overlap integral which 
might be more or less arbitrary for different pairs of states.) This work is our first attempt 
to fill this gap. 

2. General theory 

Let us start by specifying our Hamiltonian in the standard form as 

H = H ,  + H p h  + H e - p h  = H O  + H e - p h  = Z Eraia, + Z fiwKbibK 
r s = ? l  K 

Here s, E,,  wK, S2 and U: = (pi UK Ir) are the spin index, the single-electron energy for 
a particle in a localised eigenstate (ir))  of H e ,  the harmonic phonon frequency, the 
normalising volume and the electron-phonon interaction matrix element, respectively. 
(This Hamiltonian is clearly approximate; the possible role of some important terms 
and mechanisms omitted in (2) but taking place in reality as well as that of approximations 
used here and below will be briefly mentioned in section 6. One should also note that, 
in fact, our reasoning in this section is rigorous as we start using (2) and approximate 
treatments only in section 3.) With the applied external field 

and designating the electronic dipole momentum as 

we can linearise the Liouville equation with respect to 8 as 

and 
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with p(t)  being the electron-phonon density matrix. By a standard projection technique 
with a projector D(=D2) ,  we obtain from (5) 

at 
a 
- [D6p(t)] = -iDLDdp(t) - D L  exp[-i(1 - D ) L ( t  - t ) ] ( l  - 0)  

Using the retarded Fourier transformation, (8) turns out to be 
[ z  - DLD - DL{I/[~ - (1 - D ) L I ) ( ~  - D)LDnmpz 

= -(l/h)%'D[d, p,,] - (l/h)%'DL{l/[~ - (1 - D)L] )  
x (1 - 0) [d, Pql (9) z = cc) + is ,  

Here, for z # 0, expanding in powers of g to the lowest order, multiplying by a:a, and 
taking the trace, one obtains the linearised form of (1) which has, however, no explicit 
solution (eapek 1988~). As stressed above, however, this would mean a return to the 
standard treatment which becomes incorrect at small frequencies. Instead, therefore, 
we apply some exact algebra to (9) showing that 
D W [ Z  - (1 - D)L1)(1 - D)[d, Peql 

= [I - D L { I / [ Z  - (1 - D)L]}IIDL[l/(z - L)1(1 - D ) [ d ,  peq] 
= [I - D L { l / [ z  - (1 - D)L]}]D{-l + z[l/(z - L)])(l - D)[d, p,,] 
= uz - DLD - DL{I/[Z - (1 - D)L])(~ - D)Ln 

x D [ ~ / ( z  - L)I(1 - D)[d, ~ e q l .  (10) 
Therefore, the explicit solution to the exact (linearised in %) GME (9) exists and equals 
DSp' = -(l/h)%'[D[l/(~ - L)](1 - 0) 

+ (l/[z - D L D  - DL{l/[z - (1 - D)L]}(1 - D)LD])D][d, pe,] 

= -(1/h)%'D[1/(z - L)][d, peq]. 

= (i/[z - DLD - DL{I/[~ - (1 - D)LI}(~ - D)LDnp. 

(11) 
Here, we have used the fact that (as in for example the partitioning technique) 
D[l/(z - L ) ] D  = D/{z  - L - L[(1 - D ) / ( z  - L)]L} 

(12) 

( D A ) / A , m p  = P&6/m(Trph (13) 

C p ; * = 1  (14) 

Now, we specify our projection superoperator D as 

where A is arbitrary, p R  fulfils the condition 

I 

and the subscripts 1, m (A,  ,U) designate many-body electron (phonon) eigenstates of 
He(Hph). Then 

D L D  = 0. (15) 

1/nz - DL{I/[~ - (1 - D)LI)(I - D)LDj 
The term 

gives rise to terms 

in the lowest order in g in the usual kinetic theories of relaxing systems (t is the lowest- 
order relaxation time). In these theories, such terms result from dividing the kinetic 

-I/(z + i/z) = -it/(1 - izz) 
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equation (in the Fourier picture) by its left-hand side (compare (9)). Because, however, 
our kinetic equation (GME) (9) (in particular its right-hand side) is exact to all powers of 
g ,  such a term cancels in the exact solution (11). On the other hand, the term -l/(l - 
i tz)  in the solution for the AC conductivity for example has a sound physical meaning 
given by correspondence to experiment (see the next section). Its origin in the GME 
theory must be therefore looked for somewhere else than on the left-hand side of the 
exact (to all powers of g)  kinetic equation (GME) (9). In section 4, we shall see that this 
term results from higher-order terms in expansion of the right-hand side of (9) or its 
solution (11). Here, we should just like to mention that, up to now, no real use of our 
Hamiltonian (2) has been made. Thus, the conclusion about the origin of the terms 
- l / ( l  - izz) is rigorous and model independent. 

3. The lowest order in g 

In order to illustrate the importance of the above arguments about the role and origin 
of terms -l/(l - izz), let us calculate the AC conductivity from (11) keeping just the 
lowest-order (second-order) terms in g.  In this order, from (ll), we obtain 

1 1 1 
n 2 - L ,  z - L ’ Tr[exp(-PH)] 

D6p‘ = --%‘D- (1 + Z-)[d 

exp(-kHO)[He-ph 7 exp(kHO>pi\) 

P g = exP(-BHo)/Tr[exP( -BH,)l. 
Here 

.Y * . * = (1/6)[H,,, , . . . ] 
LO . . * = (l/h)[Ho, . . . ]  

and the fact has been taken into account that 

DLO = LOD = 0 

and 

D [ d ,  P e q l  = 0 (19) 
owing to our choice of (4) with only diagonal elements of coordinates. Thus, assuming 
henceforth implicitly the thermodynamic limit to be performed first, the AC conductivity 

a(o  + i s )  = 
x p  Tr(up+ssuupsoDSpW+id) 

E 2  %.+is 
-ie(w + i s )  

sz p s o = i - t  
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aqs K 
X 

h(w + i6) - E ,  + E~ + ~ w K  

Consequently, for the real part for example 

x {nB(hwK)6(ho - &r + &q + hOK) 

+ [1 + nB(hWK)]b(hw - &, + &q - nu,)} 
x [1 - exp(-pho)]/hw + O(g4) 

nF(z) = {exp[p(z - p)1 + nB(z) = [exp(pz) - 11-l (21) 
with p being the chemical potential. In order to check this result with experiment, let us 
assume a constant density NF of uncorrelated electron levels with a constant localisation 
radius y-’ of corresponding orbitals, the K modes being extended standing waves with 
the Debye spectrum, the temperature T being less than the Debye temperature 0 and 
the coupling being of the deformation potential type. Then (21) yields after lengthy but 
analytical integrations (compare &pek (1976) for the DC case) 

Re a(w + io+) = [E ie2N$/PhS(yS ) ’ ] ( k~  T)’[ ins %n6(Pfio)2 
+ &n4(phw)4  + ik3n2(phw)6 + &(ph@] + O ( E f )  (22) 

p = l / kBT w 6 kgO/h .  

Here El  is the deformation potential (accepting the role of g here), p i s  the mass density 
and s is the velocity of sound. Taking the DC limit w + 0 in (22), one easily recovers the 
standard GME result for the DC conductivity calculated with the proper order of limits 
( thpek 1987) which corresponds well (as far as the T-dependence as well as the mag- 
nitude is concerned) to experiment (C9pek 1976). The w-dependence of (22), however, 
does not correspond to experiment which seems to prefer the form 

R e a - w s  s s l  (23) 
in a broad interval of frequencies. This disagreement may be ascribed to insufficient 
accuracy of (22), owing to the full omission of higher-order (in g or E,) terms. So, we 
have to construct not the weak-coupling but rather an intermediate-coupling theory in 
the AC case in order to reconcile the theory with experiment. Here, by the intermediate 
theory, we mean such the kind of theory which is partially summed to infinite order in 
g. This itself does not yet automatically warrant, in general, its applicability in a greater 
area of g or in the same (as in the DC case) area for an extended interval of o. On the 
other hand, when such a summation is performed systematically, one can thus include 
for example all the relevant single-phonon processes in all orders in g, omitting all 
polaron and many-phonon processes. In particular, this is the case of our approach in 
the next section. Thus, one can really expect that the theory may remain true even in 
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the AC case as long as the strength of the coupling is sufficiently weak for the many- 
phonon and polaron processes to be of minor importance; this may be checked by 
comparing for example the DC limit of (22) with experimental values of the DC conduc- 
tivity. 

4. Intermediate-coupling theory 

We start from (1 1), rewriting it in the form 

Ddp' = - (1/f i )x2N1 + [l/(z - L)]2}[1/(z - L,)][d, peq] 

= -(l /h)V{D[l/(z - L)]D + D[l/(z - L)](1 - D)} 

x W / ( Z  - LO)lld, Pes]. (24) 
In the second equality, we have used (18) and (19). Now, in the braces in the second line 
on the right-hand side of (24), we neglect the second term D[l/(z - L)](1 - D) as the 
corresponding contribution to Ddp' is proportional to g4 at least. Formally, however, 
because of this approximation, the result for the AC conductivity starts to depend on the 
choice of pR in (13). In order to avoid formal introduction of polaron and many-phonon 
processes (which would be here beyond the scope of accuracy of the theory owing to the 
above approximation), we assume henceforth that 

P R  = exp( - P H p h  )/Tr[exp(-PHph > I *  (25) 

Then, using (12) and (15), we obtain for the AC conductivity 

x [W + id - DL(I/[W + id - ( I  - D)L]}(I - D)LDI-'D% 

- hwK)] a A a q s b K  (0) 

a: a qs b A 

1 - exp[-P(e, - 
( 
1 - exp[-P(&, - 

&, - &q - hWK + id - &,/h + Eq/h + O K  

+ hmK)] + 
&, - &q + hWK o + id - ~ , / h  + - O K  

(26) 
Here, we may formally return to (22) when neglecting the term 
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in the denominator in (26). Even without doing that, taking properly the DC limit 
w + id + 0 first, we can still reobtain aproper form of the Dcconductivity (Capek 1987): 

+ d ( E r  - & q  - hwK)[ l  + nB(hWK)]}. 

(For the above model with deformation potential coupling, (28) coincides with the DC 
limit of (22) .) Starting from the next approximation, however, the correspondence to 
the DC limit (28) is lost as this approximation is based on a reversed order of limits which 
is unacceptable at very low frequencies. In particular, we first approximate (27) by its 
lowest-order counterpart (lowest-order term in g) and then take formally the DC limit 
w + id + 0. Thus, from ( 2 6 ) ,  

D 3  
1 

Tr[ ap:oapsn w + id - DZ[l/(-L, + iO+)]ZD 

1 - exp[-P(&, - eq - hWK)] ( &r-&q-hWK w + id - &,/ti + Eq/h + 
1 - exp[-P(&, - E~ + hWK)] 

a: aqs K (0) 

a I: a q s  b i 
o + id - ~ , / h  + &,/TI - O K  

+ 
&, - & q  + hOK 

(29) 
Now, one should make the term DZ[l/(-Lo + iO+)]ZD in (29) more explicit. 

Because of our choice of D ,  DA is diagonal in electron indices: 

( W U ”  - 61, (30) 
for any A .  Then, after some straightforward algebra, we obtain 
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aqs K 

ti(w + id) - E ,  + + ~ W K  

1 - exp[-P(e, - eq - hwK)] 
&, - &q - h@K h ( ~  + id) - E ,  + eq + ~ w K  

with for example 

= (I/ n (1 + exp[-P(&n - PI]}) 
n(+,s) 

x , , , m n . ,  2 . =O.1  [exp (-B n(#r.q) C ( E n  - P I % )  
( n i t r . 4 )  

-1 

w + id + iw, + i wnq(l - m n ) )  1. (33)  
n(# r ,q )  

Factors (33) entering (32) express the influence of the third-state (fourth-state, etc) 
occupation fluctuation on the AC conductivity. In general, they can be easily calculated 
just in the limit T-+ 0. 

5 ,  Correspondence to Markovian theory 

Because the Markovian theory is not a consistently fully quantum approach (which 
might become important at very low temperatures), let us assume the high-temperature 
regime 

kB@ e kBT (34a) 

/ E ,  - ~ ~ l <  kgT. (34b) 
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Then the exponentials in (32) may be expanded. Except for factors such as (33) multiplied 
by w + id, we thus get almost (21) as far as 

hw kB T.  (35) 
The result (21) is, however, almost w independent as far as (35) applies (see (22)). This 
indicates that we can easily neglect h(w + id) in h(w + id) - E, + & hwK in the 
denominator in those terms which give rise to the hopping rates. This yields 

nB(fiWK) + + n B ( h w K >  w Wrq 
' ( h w  - E r  + &q + hwK hw - E ,  f &q - ho,)  w 2  + wtq 

= Re a(') (w) + Re d2)( U). (36) 
Here, we have (as usual) assumed the pair approximation (i.e. we have neglected 

Wnq(1 - a~a, , , )  and Z'n(+q,r)  Wnr(1  - aLa,,) in the denominator in (32)) and 
assumed the high-temperature limit, i.e. Wqr = Wrq. The summation Z r , q  in (36) is for 
such pairs of states which fulfil (34b).  

The term Re a(')(@) is a result of the Markovian lowest-order theory of the AC 
conductivity in the pair approximation (see, e.g., Efros (1981) for a short introduction) 
while Re d2)(w) has no counterpart in this type of theory. The reason is that it is due to 
the Hilbert transform of the frequency-dependent hopping probability-a quantity 
which is unknown in the standard Markovian approach. 

Starting from the Markovian theory, it has been shown many times that Re  d')(w) 
corresponds approximately to experiment, i.e. to (23) ,  provided that the net hopping 
rate may be taken as for example the exponential 

rqp  = rpq  = W p q n F ( E q > [ l  - n F ( E p > l  

2 yo  exp[-2yIxp - xq I - W(1 ep - E q  I + I - iu I + I E q  - iu Ill (37) 
with a constant prefactor yo. So, it might be tempting to declare that Re d 2 ) ( w )  is just a 
small correction and that the GME theory confirms the standard Markovian approach to 
the AC conductivity in agreement with experiment. (Here, one should also realise that 
with (37) ,  however, the GME result (28) contradicts experiment on the DC conductivity; 
compare Ambegaokar et aZ(1971).) The problem is, however, that y o  in (37) cannot be 
in fact taken as a constant as it strongly depends on 1 - eq 1 in realistic models (eapek 
1977). Taking this into account, one gets that the GME result (28) agrees with experiment 
on the DC conductivity quite well. Designating therefore (28) as &FE, we thus have 
using (36) 

Re a ( ' ) ( w )  < agp" = < Re aexp(w)  W Z O  (38) 
because w2/(w2 + x 2 )  < 1 for x # 0. Moreover, the last inequality in (38) becomes very 
sharp with increasing w .  Therefore, as far as we can identify Re  a""P(w) with (36) ,  
Re d2) (w)  is not a negligible correction and the GME theory thus does not fully confirm 
the standard Markovian theory of the AC phonon-assisted hopping conductivity. Further 
analysis is, however, still needed. 
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6. Possible effect of approximations used 

One should stress that, up to equation (15), no approximations have been used. 
So, our result that terms - l / ( l  - izz), z = o + id do not appear in the rigorous 
theory as a result of dividing the kinetic equation by its left-hand side is fully 
general. Anyway, such terms have been, on the other hand, found as a result of 
approximations (expansions) on the right-hand side of the kinetic equations (GME) , 

One should therefore discuss the possible effect of these approximations on such 
terms and mainly the conclusion about the existence of non-negligible corrections 
to the standard theory in more detail. 

Some approximations are connected with the model Hamiltonian (2) used for 
the first time in (16). In particular, these are the omission of the particle-particle 
interaction term, the omission of phonon anharmonic terms and taking just 
the linear particle-phonon interaction Hamiltonian. Avoiding the first type of 
approximation leads to technical complications; for example for the Hubbard type 
of coupling (taking the strongest intrasite interaction into account), however, it is 
known that the structure of the result remains the same for all types of process 
connected with four possible occupancies of the initial and final particle states by 
particles having opposite spins to that of the hopping particle. As far as the omission 
of anharmonic and non-linear particle-phonon interaction terms is concerned, these 
are unnecessary approximations needed just to make the hopping rate formulae 
explicit. Finally, in (16), the fact has also been used that (4) does not include off- 
diagonal elements of the coordinate. These elements are, however, very small 
owing to small overlaps between localised states and no serious corrections are 
expected to result from them. 

Omission of -g4 terms in (24) and choice of (25) correspond to the aim of the 
paper: to construct a GME counterpart of the standard theory ignoring many-phonon 
and polaron effects. One cannot exclude the possibility that these effects might 
become important in some specific materials but, in such a case, the conclusion of 
the present work about non-negligible corrections to the standard AC hopping 
conductivity result would yet more pronounced. 

In (29), we have calculated the lowest-order relaxation time term in the DC 
limit. This approximation becomes in principle unreliable in the DC limit as already 
stressed above. On the other hand, it also corresponds to the spirit of the standard 
approach in which this approximation is never questioned. Moreover, here, we 
never go to very low frequencies after equation (28). On the other hand, trying 
to compare (32) with the standard result, we do not exceed such a crucial frequency 
beyond which the frequency dependence of the hopping rates (ignored in the 
standard treatment) might appear. Finally, also in agreement with the (not fully 
consistent quantum) character of the standard Markovian approach, we assume the 
high-temperature limit in (34), (35). These approximations are necessary just for 
comparison with the standard theory on the level on which the latter theory applies. 

Therefore, summarising, we see that approximations used here are not crucial 
for the main conclusion of this work regarding the existence of non-negligible 
corrections to the standard approach. Moreover, we have no reason to believe that 
amending the Hamiltonian or improving the approximations used might yield better 
physical justification of the standard theory as we do not see any physical effect 
omitted in (2) or other approximations used here which might be restored (or 
improved again) by approximations leading to the approximate lowest-order 
Markovian theory. 
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